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ABSTRACT: Reducing methane emissions from oil and gas systems is a central component of
US and international climate policy. Leak detection and repair (LDAR) programs using optical gas
imaging (OGI)-based surveys are routinely used to mitigate fugitive emissions or leaks. Recently,
new technologies and platforms such as planes, drones, and satellites promise more cost-effective
mitigation than existing approaches. To be approved for use in LDAR programs, new technologies
must demonstrate emissions mitigation equivalent to existing approaches. In this work, we use the
FEAST modeling tool to (a) identify cost vs mitigation trade-offs that arise from using new
technologies and (b) provide a framework for effective design of alternative LDAR programs. We identify several critical insights.
First, LDAR programs can trade sensitivity for speed without sacrificing mitigation outcomes. Second, low sensitivity or high
detection threshold technologies have an effective upper bound on achievable mitigation that is independent of the survey frequency.
Third, the cost effectiveness of tiered LDAR programs using site-level detection technologies depends on their ability to distinguish
leaks from routine venting. Finally, “technology equivalence” based on mitigation outcomes differs across basins and should be
evaluated independently. The FEAST model will enable operators and regulators to systematically evaluate new technologies in next-
generation LDAR programs.
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1. INTRODUCTION

Methane emissions from petroleum and natural gas systems
accounted for 28% of US methane emissions in 2018, based on
the Environmental Protection Agency’s (EPA) greenhouse gas
inventory (GHGI).1 Furthermore, several recent studies have
shown that official GHGI estimates likely underestimate
methane emissions from natural gas systems.2−6 Methane is
the primary constituent of natural gas and has a global
warming potential 34 times that of carbon dioxide over 100
years and 86 times over 20 years.2 Therefore, reducing
methane emissions from oil and gas operations is critical to
realize GHG emissions benefits from recent coal-to-gas fuel
switching in the power sector.7−9 In addition, addressing
methane emissions reduces volatile organic compounds
coemitted from oil and gas operations, thereby improving
local air quality.10 Most importantly, minimizing methane
leakage is a critical interim measure on the pathway to net-zero
greenhouse gas emissions that will eventually require
significant reductions in the combustion of all fossil fuels,
including natural gas.11,12

State and federal governments throughout North America
have enacted regulations in recent years to address methane
emissions from oil and gas activity. California, Colorado,
Pennsylvania, and several other states now require periodic
leak detection and repair (LDAR) programs at upstream and
midstream facilities to find and fix leaks.13−16 Separately, some
oil and gas companies have also implemented voluntary LDAR

programs to reduce methane leakage from their operations.17

The most common technologies approved by regulators and
used in these LDAR programs include EPA’s Method 21 and
optical gas imaging (OGI)-based infrared cameras. Recent field
work has shown that these OGI-based LDAR surveys have
been effective in reducing emissions over several years.17

Despite this success, there are challenges in scaling OGI-based
LDAR to achieve rapid emission detection across vast
geographic and temporal scales.
OGI surveys require an operator to manually inspect every

potential leak source. Existing LDAR requirements typically
specify one to four OGI surveys per year. The efficacy of these
programs is limited by the probability that large unintended
emissions (referred to as fugitive emissions or leaks) will
persist for many months before detection. Ensuring that large
emitters are quickly found and repaired therefore requires
frequent LDAR surveys. However, frequent OGI-based LDAR
surveys across thousands of sites quickly become logistically
challenging and cost prohibitive.
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Recently, several companies have developed novel ap-
proaches to methane leak detection that address the survey
frequency limitation of OGI surveys.18−20 Based on publicly
available information, we can define three broad classes of new
detection methods:

(1) Novel component or equipment-level survey methods:
OGI and EPA Method 21 surveys inspect every
component and identify the source of emissions as
part of the inspection. Drone- and some truck- and aerial
platforms provide similar specificity at potentially higher
survey speed and lower cost. Technologies in this class
were tested during the Stanford/EDF mobile monitoring
challenge and other studies.18,20,21

(2) Site- or equipment-level screening methods: Rapid site-
level screening may be used to identify high-emitting
sites that warrant component-level secondary follow-up
surveys. Site-level screening techniques were also tested
in the mobile monitoring challenge and deployed in
numerous academic studies.18,19,22−24

(3) Continuous monitoring methods: Sensors are perma-
nently installed in proximity to oil and gas sites and
trigger follow-up surveys when they detect an anomalous
emission.19,20,25,26 Like site-level screening programs,
continuous monitors allow rapid detection of large
emissions while reducing the number of components
that must be inspected directly.

Regulators and operators require a method for comparing
the emissions reduction effectiveness of LDAR programs using
continuous monitoring and site- or equipment-level screening
methods to that of conventional LDAR programs. For
example, Colorado’s methane regulations require periodic
leak detection surveys using a handheld OGI camera or an
equivalent technique.16 However, the method for determining
whether a technique is equivalent is not specified. This is
referred to as “technology equivalence.”
A recent framework on technology equivalence developed

jointly by US and Canadian scientists, industry experts, and
regulators emphasizes the role of models in comparing the
performance of different technologies and methods.27 These
models help evaluate new LDAR programs without the need
for expensive, time-consuming, and concurrent field trials with
new technologies. The Alberta Energy Regulator and the US
EPA now accept modeling results as a component of
applications for novel LDAR programs.28,29 We demonstrate
the Fugitive Emissions Abatement Simulation Toolkit
(FEAST) as an effective model for equivalency analysis in
this work.32 Similar models have been used to approve
alternative fugitive emission management programs in
Alberta.30,31

Previous work has compared the performance of OGI-based
detection methods to alternative detection methods and shown
that their performance depends on the properties of the oil and
gas basin where they are applied.30,32 In this work, we critically
explore the trade-offs across several technology and LDAR
program parameters that help achive equivalent emissions
reduction compared to existing methane mitigation policies.
The modeling approach presented here accommodates any
component-level or site-level survey-based LDAR program and
provides recommendations for the design of cost-effective
emission mitigation policies. To demonstrate the equivalency
framework, we simulate both component and site-level survey
methods with a broad range of sensitivities in this work. An

OGI model is included in component level-survey simulations
to model existing policy scenarios.
Our approach illustrates how FEAST can provide the

modeling support required by the equivalency framework.27

While this work focuses on upstream facilities, it can be
adapted to other sectors of the oil and gas supply chain. All
model code and associated documentation is made publicly
available as part of this publication for use by scientists,
operators, and regulatory agencies.

2. METHODS
FEAST combines a stochastic model of methane emissions at
upstream oil and gas facilities with a model of leak detection
and repair (LDAR) programs to estimate the efficacy and cost
of methane mitigation.32 All simulation settings used in this
work are further documented in the Supporting Information
(SI, Sections S2 and S3). A detailed description of the
underlying model construction can be found in ref 32.

2.1. Facility DescriptionsActivity Factors. Effective
representation of methane emissions from upstream facilities
requires both activity factors and emission characteristics
corresponding to specific oil and gas basins. In this work, we
use publicly available data from the U.S. EPA Greenhouse Gas
Reporting Program (GHGRP) and the Colorado Oil and Gas
Conservation Commission (COGCC) to create an activity
model representative of sites in the Denver-Julesburg (DJ)
basin.34 On average, there are 1.9 wells per site in the DJ-basin,
with a range between 1 and 51 wells per site. Activity data for
this work also include component counts and frequency of
unloading events (SI, Section S2).

2.2. Emission DescriptionsEmission Factors. FEAST
simulates vents and fugitive emissions. Vents are emissions that
occur by design, such as emissions from gas-driven pneumatic
devices, and pressure-release valves. We also model liquid
unloading events. For this work, unloading events are
represented based on the total number of events and emissions
reported to the GHGRP,33 while all other vents are
approximated by drawing emission rates from an empirical
distribution of observed emissions.
The fugitive emission model is characterized by an empirical

emission distribution and a leak production rate [# new
emissions/site-year]. FEAST simulates new leaks as independ-
ent random events in a Poisson process. The leak production
rate is estimated based on the number of emissions found in
repeated surveys of production equipment including tanks,
pneumatics, and fugitive equipment under Colorado’s OGI
survey regulations.16,35 The empirical emission data set is
compiled from component-level emission measurements from
five recent publicly available studies.17,36−39 The studies
included here did not distinguish between vents and leaks.
In this work, we assume that 46% of emissions simulated from
the data set are vents (see the SI, Section S4.4 for additional
detail). The emission rate for each emission is drawn with
replacement from the data set. This approach is preferred
compared to standard EPA emission factor approach because
of the importance of superemitters and skewed emissions
distributions on the mitigation outcomes of LDAR programs.
Additional information describing the data is available in the
SI, Section S2.
Several prior studies have demonstrated the highly skewed

nature of methane emissions, with the top 5% of sites
contributing to between 20 and 70% of total emissions
depending on the geologic basin surveyed.40−43 In a sensitivity
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analysis, we use a parametric emission-size distribution to vary
the contribution of the largest emitters to total emissions to
understand how variability between basins will affect
mitigation outcomes. The parametric distribution was defined
such that emissions from the 80th percentile and larger were
drawn from a power-law distribution rather than the empirical
distribution. The exponent characterizing the power law was
then adjusted to achieve a range of skews in the emission
distribution as observed in field campaigns throughout North
America. The parameterization maintains the median emission
rate while exploring the range of equivalency conditions under
different emission distributions (see SI, Section S2.3.3).
2.3. Model Simulation. Every FEAST run simulates

undirected inspection and maintenance (UDIM) activities in
addition to LDAR programs. The UDIM model represents
voluntary maintenance activities undertaken by operators. The
UDIM model causes the total number of emissions to
equilibrate over time in the absence of an LDAR program as
UDIM repairs offset the occurrence of new fugitive emissions.
In practice, emissions may increase or decrease over time as
faults in new equipment are addressed (decreasing emissions),
old equipment becomes more leak prone (increasing
emissions) or other phenomena affect trends in emissions.30

UDIM repair rates that result in increasing or decreasing
emissions over time are explored in the SI, Section S4. LDAR
models simulate regulatory LDAR surveys that occur in
addition to UDIM activities. Comparing emissions in a UDIM-
only scenario to an LDAR program helps calibrate the model
by comparing model-derived emission reduction from OGI-
based LDAR surveys to recent field data and regulatory
models.16,17

2.4. LDAR Programs. In this study, we simulate two types
of LDAR programs: component-level detection programs and
tiered detection programs. Component-level detection pro-
grams evaluate every component for emissions independently
and identify the source of emissions at the time of detection.
Tiered detection methods take a hybrid approach to leak
detection: an initial survey to perform site-level screening that
flags sites for follow-up with a component-level survey to
identify components for repair. Both site-level and component-
level detection is determined stochastically using probability of
detection (PoD) curves dependent on emission rate and the
method’s operational envelope (SI, Section S3).35

2.4.1. Component-Level Survey. OGI camera surveys are
an example of a component-level survey. Different component-
level survey methods are distinguished by their probability of
detection (PoD) curves, survey speed, and cost, as shown in
Table 1. The median detection limit is defined as the emission
rate at which the probability of detection is 50% (SI, Section
S3). Several recent empirical, peer-reviewed performance
assessment studies are used to parameterize and validate the
PoD curves.18,35,44 The costs represent the full cost of leak
detection that would be charged by a service provider, similar

to the approach recently used by the EPA.45 The per-site cost
reported in Table 1 for OGI surveys is calculated using three
parameters: the component-level survey speed (741 compo-
nents/h), an hourly billing rate ($360/h), and the number of
components per site. The per-site cost for an aerial screening
survey is input to FEAST directly based on publicly available
estimates. Leaks detected by a component-level survey are
immediately passed to the repair process that eliminates the
leak one day later.

2.4.2. Tiered Surveys. Tiered detection programs use a
screening method to identify production sites with high
emission rates, similar to several existing aerial technologies.19

Like the component-level detection model, the probability of
detection curve is modeled as a sigmoid based on empirical
observations in recent peer-reviewed studies (Table 1 and SI,
Section S3).18 For these simulations, all sites with emissions
that are detected by the screening method are flagged for
follow up by an OGI camera inspection to identify the
source(s) of the emissions.

2.5. Simulation Settings. Simulations represent emissions
from 100 well sites over 3 years with a time resolution of 1 h.
300 Monte Carlo iterations were completed for every LDAR
program and emission scenario.

2.6. Mitigation and Equivalency Calculations. Miti-
gation is calculated based on the difference in emissions
between the UDIM and LDAR scenarios. This definition of
mitigation is useful for comparing our results to regulatory
projections (e.g. ref 45), but carries uncertainty in the UDIM
repair rate into the results.30 The framework presented here
can be employed by regulators, operators, or service providers
to determine which LDAR programs can achieve equivalent
emission reductions.
SI, Section S4 introduces an equivalency metric that

compares component-level and tiered methods to each other
without reference to the UDIM scenario. Since variability in
the UDIM repair rate tends to affect both classes of LDAR
program similarly, the impact of UDIM uncertainty on results
is partly canceled out.30

3. RESULTS
We present a series of results that evaluate equivalency and
cost effectiveness between LDAR programs with increasing
degrees of freedom such as technology choice, survey
frequency, and detection threshold. The results demonstrate
the equivalency framework applied to the Denver-Julesberg
basin for tiered and component-level surveys. Since the model
and data are public, it can be adapted to other basins with
different emission distribution characteristics.

3.1. Emission Mitigation under OGI and Tiered LDAR
Programs. Observing the output from a single Monte Carlo
iteration of FEAST for one tiered program and one
component-level program highlights some of the critical
features of the model. Figure 1A shows the first 30 days of
emissions from a single FEAST iteration of three scenarios:
UDIM, semi-annual OGI-based component-level program, and
semi-annual Aerial + OGI tiered program. Since LDAR
programs only affect leaks, vented emissions are identical
across all scenarios. Liquid unloading events result in short-
duration spikes that drive the emission rate to over 20 kg/day
per well. The rapid survey speed of the tiered detection
method allows emissions to be found more quickly than a
traditional OGI survey in the first few days of the simulation,
but the OGI method surpasses the Aerial + OGI program by

Table 1. Key Parameters of the OGI-Based Component-
Level Detection Method and Tiered Aerial Detection
Method Used in This Study

Method
Median Detection Limit

(kg/day) Survey Speed
Cost

($/site)

OGI (component
level)

2 6 sites/day $600/site

Aerial (tiered) 94 222 sites/day $100/site
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the end of the 30 day period because the OGI survey is more
sensitive (lower detection threshold) than the aerial survey.
Extending Figure 1A over the full 3-year duration of the

simulation with semi-annual survey frequency reveals long-
term trends in emissions under each LDAR scenario. The time
series in Figure 1B is smoothed to daily average emission rates.
Less sensitive than the OGI camera, the aerial survey identifies
fewer sites with emissions compared to OGI. Thus, fewer sites
are flagged for follow-up repair, resulting in higher average
emissions when the two methods have the same survey
frequency.
Reviewing results from many iterations illustrates the range

of results that are likely in a particular scenario. Figure 1C
shows the emission mitigation achieved under both LDAR
programs, relative to emissions in the UDIM scenario. A
semiannual OGI-based LDAR survey results in fugitive
emission mitigation of approximately 60%, similar to EPA’s
assumptions in its methane regulations.45 By comparison, the
Aerial + OGI LDAR program achieves emission mitigation of
about 33%, less than the conventional OGI survey. In this
scenario, the two LDAR programs are not equivalent. The

error bars represent variability from 300 Monte Carlo
iterations of LDAR programs. Although FEAST models
detection as a probabilistic process, the uncertainty range
shown in Figure 1C is driven by variability in the emission
simulation rather than the detection simulation (see SI, Figure
S9). Therefore, the relative performance of the two simulated
LDAR programs to each other is more certain than the
absolute emission reductions in either case.
Mitigation cost results are also stochastic. Although the

Aerial + OGI program achieves less mitigation than the
conventional OGI program, Figure 1D shows that it has a
lower cost per ton of avoided CO2 equivalent emissions. The
mitigation cost for the Aerial + OGI program is $11/tCO2e,
about 31% lower than the $16/tCO2e cost for OGI-based
mitigation. In this example, the Aerial survey flagged just 10%
of sites for follow-up surveys.

3.2. Mitigation Equivalence Dependence on Survey
Frequency. Since an aerial survey will not detect as many
emissions as an OGI survey, the Aerial + OGI program must
survey more frequently to achieve equivalent emission
reductions. Figure 2 shows the impact of survey frequency
on the mitigation and cost of the two LDAR programs.
Figure 2A compares the component-level and site-level

emission rate distributions under UDIM conditions to the
median detection thresholds of the OGI and Aerial technology
(see the SI, Figure S2 for additional details of the PoD curve).
Overall, 94% of emissions come from sources larger than the
median detection threshold of the OGI camera. However, only
41% of emissions come from sites with a total emission rate
greater than the median detection threshold of the Aerial
technology.
Figure 2B shows the emission mitigation achieved through

both LDAR programs as a function of survey frequency. For
the conventional OGI-based survey, increasing survey
frequency from 2 to 4 times per year increases mitigation
from 60 to 73%. This is similar to the emission mitigation
expected in federal regulations, where semiannual and
quarterly surveys reduce emissions by 60 and 80%,
respectively.45 Thus, model parameters here reproduce
emission mitigation current regulations expect to be achieved
under different OGI-based LDAR survey frequencies.
Increasing survey frequency reduces the duration of fugitive

emissions. In the UDIM scenario, leaks have an average
duration of 208 days. Under an LDAR program, leaks that are
large enough to be detected will have an average duration of
approximately one-half the time between surveys: for example,
quarterly surveys result in an average duration of approximately
45 days for large leaks. LDAR programs mitigate emissions by
reducing their duration.
Consider a mitigation target of a 40% reduction in fugitive

emissions. The conventional OGI-based LDAR survey can
achieve this mitigation target with an annual survey.
Equivalently, the tiered Aerial + OGI LDAR program achieves
40% mitigation if the survey frequency is increased to
approximately three surveys per year. Higher levels of
mitigation can be achieved with either program if the survey
frequency is increased further, although the aerial survey
cannot achieve 80% mitigation even with monthly surveys.
While increasing the survey frequency decreases the duration
of detected emissions, emissions much smaller than the
detection threshold remain unaffected even at high survey
frequencies. The detection threshold of a screening technology

Figure 1. Results of FEAST simulations representing semi-annual
OGI surveys (“OGI”) and aerial screening with OGI follow up
(“Aerial + OGI”) at high-emitting sites. (A) Thirty days of hourly
emissions in a single realization generated by FEAST. (B) One-day
moving average emission rate from a single realization under three
LDAR scenarios over the entire simulation period of 3 years. (C)
Distribution of mitigation achieved by OGI and Aerial + OGI LDAR
programs. (D) Distribution of mitigation costs for the OGI and Aerial
+ OGI LDAR programs. Outliers are greater than the 75th percentile
by more than 1.5 times the interquartile range.
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thus places an effective upper bound on the amount of
mitigation that can be achieved.

Figure 2C shows that the cost of surveys for each LDAR
program is proportional to the survey frequency. Prior studies
have shown that the majority of costs associated with the
implementation of LDAR programs are reflected in the survey
costs.46−48 The US EPA’s own analysis of its methane
regulations shows that semiannual OGI-based LDAR surveys
contribute over 70% of the total cost of the LDAR program.
The simulations shown in Figure 2B,C suggest 60% fugitive
emission reduction using either semiannual OGI surveys or
nine aerial surveys per year with OGI follow up. Under our
cost assumptions, semiannual OGI surveys incur costs of
$1400/site-year compared to $2000/site-year to achieve
equivalent mitigation with more frequent Aerial + OGI
surveys.
The results of Figure 2B,C were combined to generate

Figure 2D: the cost per metric ton of CO2 equivalent
emissions mitigated. The nonlinear mitigation curve of Figure
2B causes the mitigation cost to increase more slowly for
survey frequencies less than 3/year: as survey frequency
increases from zero, mitigation also increases partially
offsetting the added survey costs. At higher survey frequencies,
mitigation approaches its asymptote resulting in near-linear
growth in mitigation cost. The result illustrates that the
marginal cost of mitigation increases as the survey frequency
increases.

3.3. Cost Effectiveness of Equivalent LDAR Programs
Requires Optimization Across Survey Frequency and
Detection Threshold. The cost effectiveness of emission
mitigation depends on both the leak detection method and the
survey frequency. Here, we explore the cost effectiveness of
fugitive emissions mitigation ($/tCO2e) by modeling two
generic leak detection methodscomponent-level surveys at
an average cost of $600/site and site-level surveys at $100/site.
The results highlight the impact of sensitivity and survey
frequency, while the cost per-site inspection remains constant.
In practice, we find that survey costs are dictated more by the
speed of the platform (aerial vs ground-based surveys) rather
than the sensitivity of the methane sensor, thus justifying the
constant per-site inspection costs. For example, Schwietzke et
al. report that the less sensitive technology (a detection limit
approximately 9 times less sensitive than the alternative)
incurred a 50% greater cost in their study.22

Figure 2. LDAR simulation results for an OGI detection threshold of
2 kg/day and an aerial detection threshold of 94 kg/day. (A)
Component-level and site-level cumulative emission distributions with
dashed lines indicating the median detection limit for the simulated
Aerial and OGI detection methods. (B−D) Fugitive emission
mitigation, survey cost, and mitigation cost with OGI and Aerial +
OGI LDAR programs over a range of survey frequencies. Uncertainty
ranges represent the 95% confidence interval generated by Monte
Carlo iterations.

Figure 3. CO2 equivalent mitigation cost of modeled technologies over a range of survey frequencies and detection thresholds. White contour lines
indicate fugitive emission mitigation percentages with the line thickness proportional to mitigation level, while the color map indicates mitigation
cost. Results from LDAR-Sim for an OGI survey, Mobile Gas Laboratory (MGL), and aircraft surveys are shown in orange dots.30
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Figure 3 illustrates mitigation cost as a function of detection
threshold and survey frequency of LDAR programs. Horizontal
transects across the mitigation contours reveal the impact of
increasing the detection threshold while holding survey
frequency constant. For small detection thresholds between 1
and 10 kg/day (high sensitivity), there is little change in
mitigation as sensitivity increases because small emitters
account for a small fraction of total emissions. However, as
the detection threshold exceeds 10 kg/day, mitigation is more
sensitive to the detection threshold. Thus, while increasing the
sensitivity of detection technology can improve mitigation
outcomes, the marginal improvement in sensitivity below
about 10 kg/day does not result in a corresponding increase in
emission mitigation. One can therefore trade high sensitivity
for lower cost without adverse mitigation outcomes.
Considering the color map of Figure 3 reveals trends in

mitigation cost. Continuing with the example site-level
detection threshold of 94 kg/day, the mitigation cost is 11
$/tCO2e for a survey frequency of 2/year but increases to 22
$/tCO2e for a survey frequency of 8/year. In addition,
mitigation cost increases as the detection threshold increases.
This trend occurs because the cost per component or site
surveyed is independent of sensitivity. The survey cost of the
component-level programs remains constant while the total
mitigation decreases, resulting in an overall increase in
mitigation cost. By contrast, the costs of tiered programs
decline as the detection threshold increases because fewer sites
are flagged for follow-up surveys. However, the results show
that the decrease in cost due to follow-up surveys is not
sufficient to offset the decline in mitigation caused by
increasing the detection threshold.
Tiered detection programs must efficiently direct ground

crews to achieve sufficient emission mitigation without
incurring secondary survey costs that exceed the savings
achieved by the site-level survey. Tiered methods that identify
high-emitting equipment rather than sites may be more
successful if they can significantly reduce the time on site
required of ground crews and avoid misallocating ground crews
due to vented emissions. Our results also show that tiered
detection programs are more cost effective if the mitigation
goal is less stringent. For example, Figure 3 shows tiered
methods with a site-level detection threshold of 60 kg/day can
achieve 50% mitigation with quarterly surveys at a cost of $15/
tCO2e, lower than the equivalent semiannual OGI-based
LDAR survey cost of $17/tCO2e. The results from Figure 3
are sensitive to the underlying emission rate distribution as
described in the following section. Figure 3 is consistent with
results from Fox et al.30 and expands on those results. The
LDAR programs used to demonstrate LDAR-Sim are indicated
in orange. While Fox et al. evaluate three different OGI
programs differentiated by their operating envelope at different
wind speeds and precipitation rates, they collapse into one
program along the two dimensions shown in Figure 3. We do
not evaluate the impact of meteorological conditions in this
work, so the reference condition in Fox et al. is the closest
comparison due to its wide operating envelope. In that
scenario, Fox reports a fugitive emission rate of approximately
2.5−5 kg/day-site, compared to 2.7−5.3 (95% confidence
interval) in this work. The results are consistent despite OGI
being treated as an order of magnitude less sensitive in this
work than in Fox et al. Our assumption in this work is based on
empirical results from field trials designed to simulate realistic
conditions, while Fox et al. reference the 3 m sensitivity

measured by Ravikumar et al.35 As the contours show in Figure
3, there is little change in mitigation as the detector sensitivity
improves beyond 2 kg/day.
Equivalence results are also consistent with Fox et al. Using

the parameters for component-level and aerial site-level surveys
from Fox et al. in our model, we find that they do not achieve
equivalent emissions reductions, consistent with the study’s
findings. Although not directly comparable, we can approx-
imate the Mobile Ground Laboratory (MGL) model by Fox et
al. using our component-level results with similar detection
sensitivity. As Fox concluded, our results suggest that the MGL
program will achieve similar mitigation to the reference
program. Our results build on the results from Fox et al. by
exploring the full sensitivity-survey frequency design space.
Any survey-based LDAR program can be placed in this space,
and the mitigation potential evaluated.

3.4. “Equivalence” Depends on the Natural Gas Basin
Where a Technology Is Applied. The skew of an emission
distribution affects equivalence between LDAR programs. An
LDAR program that specializes in quickly identifying large
leaks will perform better if emission distributions are more
skewed because high-emitting sites will account for a greater
fraction of total emissions. Conversely, a component-level
method that surveys less frequently but has a more sensitive
detector will achieve a better mitigation fraction in less skewed
distributions because it will not allow midsize leaks to persist
indefinitely. While Figures 1−3 rely on the empirical emission
distribution compiled for this work, this section explores how
equivalence is sensitive to changes in the emission distribution.
Figure 4 shows the technology detection threshold required

to achieve a target emission mitigation level across different

emission distributions. The orange and purple curves represent
mitigation under the component level and tiered detection
programs, respectively. In all cases, the survey frequency was
set to 6 surveys per year, while the detection threshold was
varied to achieve the target emission mitigation rate.
In a highly skewed emission distribution as observed in the

Uintah or Marcellus basin, 50% mitigation can be achieved
with a tiered detection program that has a detection threshold
of 200 kg/day. However, a detection threshold of 50 kg/day

Figure 4. Effect of emission-size distribution on the detection
threshold required to achieve a given mitigation target. Purple and
orange curves indicate the detection threshold required to achieve
mitigation for component- and site-level surveys, respectively. Follow-
up survey sensitivity is kept constant for all site survey methods. Gray
bars indicate the emission distribution skew observed in eight
empirical studies of site-level emissions.
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would be required to achieve the same level of mitigation in a
less skewed distribution as observed in Medicine Hat in
Alberta. More skewed distributions allow the same mitigation
targets to be achieved with a higher detection threshold,
resulting in a positive slope for all tiered and component
surveys modeled in Figure 4.
The vertical gray lines show results from empirical studies

conducted in the last 5 years from U.S. and Canadian shale
basins. The range of skew measured in various basins shown in
Figure 4 gives an indication of the combined uncertainty and
variability that exists in emission distributions. Furthermore,
the distribution of emissions that occur in a particular basin
may evolve over time due to maturing infrastructure, new
wells, and production decline. An alternative LDAR program
may become more or less effective in comparison to OGI over
time.

4. DISCUSSION AND STUDY LIMITATIONS
According to the EPA greenhouse gas inventory, more than 5
million tons of methane leaked from US natural gas
infrastructure in 2018.1 New mobile and fixed-sensor
technologies could provide a cost-effective approach to reduce
emissions. Yet, regulatory approval of these new methods
critically depends on a demonstration of equivalence to
existing LDAR approaches. The equivalence analysis described
here fulfills the modeling requirements of the equivalency
framework developed by Fox et al. and highlights the
sensitivity of results to the underlying emission model.27

Our results build on earlier work by Fox et al., Schwietzke et
al., the EPA, and others to develop equivalency estimates and
cost models.22,30,45 The original FEAST model relied on a
physics-based representation of detection technologies and did
not support LDAR programs that combined multiple
technologies.32 Empirical probability of detection curves was
introduced to FEAST in 2018.49 Fox et al. introduced an
agent-based model that supports arbitrary combinations of
detection technologies and used it to analyze several example
LDAR programs, including three distinct OGI programs and
two-tiered programs.30 Each program is compared to the
reference OGI program to demonstrate equivalence. Here, we
introduce support for tiered programs in FEAST and map the
complete sensitivity-survey frequency design space. More
critically, we make the FEAST model publicly available to
help operators, regulators, and technology developers evaluate
LDAR programs across basins and new leak detection
paradigms.
The cost modeling that we used makes a distinction between

component-level and site-level surveys. The costs of
component-level surveys were calculated based on the number
of components at a site. We calibrated the cost-per-component
so that the average site had a cost of $600consistent with the
EPA cost estimate of $600/site for OGI surveys. Our model
expands on the EPA’s work by introducing a realistic
distribution of site sizes that affect survey costs. This feature
is important for tiered detection programs because there may
be a correlation between site size and the probability that a
follow-up survey is required: the average number of
components per site flagged for follow up may be larger than
the average number of components per site.
Equivalent emission mitigation can be achieved with a broad

range of sensitivities by choosing the appropriate survey
frequency and/or using a tiered detection approach. Tiered
detection approaches take advantage of the heavy-tailed nature

of emission distributions to allocate resources to the largest
emissions, while component-level surveys invest the same
amount of time in identifying emitters of all sizes. Tiered
approaches must be efficient in dispatching ground crews to
offset the additional costs from increased survey frequencies.
Depending on their approach, LDAR programs will be

affected differently by the emission-size distribution. While the
composite emission distribution used in this work falls within
the range of emission distributions that are observed in the
United States, Figure 4 shows that no distribution can
accurately represent all basins. Furthermore, the uncertainty
in the tail of the component-level emission distribution
remains an important source of uncertainty in mitigation
modeling. Accurately representing mitigation requires im-
proved measurements of emission distributions.
Our analysis described mitigation in terms of the reduction

in average emission per site. This approach is a natural choice
in the context of regulations that provide mitigation targets as a
percentage of current emissions, but program efficacy could
also be measured by emissions intensitythat is, the mass of
methane emitted per unit of gas produced. An emission
intensity standard would reduce the sensitivity of results to
emission distribution skew: highly skewed distributions allow
less sensitive detectors to achieve large percentage reductions
in emissions, but the smaller emissions that might need to be
targeted to achieve an emission intensity standard will persist.
Uncertainty in the leak production rate and other input

variables results in broad confidence intervals surrounding
equivalency analysis. Running many Monte Carlo iterations of
FEAST allows users to accurately assess the expectation value
and range of emissions that are likely with different LDAR
programs, but it does not assess the impact of parameter
uncertainty. The sensitivity analysis presented in the SI,
Section S4 explores the impact of changing input parameters
over a realistic range. With existing data, the expectation value
for the most likely emission rate under a novel LDAR program
must be much less than the most likely emission rate under an
OGI program for a regulator to be 95% confident that the true
effect of the novel program is at least as good as a conventional
OGI program. Improving the precision of the equivalency
analysis will reduce the performance burden on novel
technologies. Reducing uncertainty in the leak production
rate estimate will improve precision the most, followed by
developing basin-specific emission distributions.
The sensitivity results confirm prior findings that demon-

strate the importance of improving leak production rate
estimates. In this work, we use data from CDPHE to estimate
the leak production rate and rely on measured emissions at
sites without frequent LDAR surveys to estimate a steady-state
emission rate. This analysis adds a new estimate of the leak
production rate to the literature, but the accuracy is still limited
by repairs that may occur between LDAR surveys, the
assumption of steady-state emissions, and the use of data
from multiple basins. We discuss a method for improving this
precision with further empirical work in the SI, Section S4.2.
Our treatment of vented emissions is similar to our

treatment of fugitive emissions: we draw emission rates from
the same empirical distribution in both cases, and then add
unloading events with a predetermined emission rate. This
approach allows us to capture the impact of having many
emissions that cannot be repaired but does not capture the
dynamic nature of many vents nor the likelihood that vented
emissions and fugitive emissions follow different size
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distributions. These two factorsvent dynamics and vent size
distributionswill be critical to future work assessing the value
of using emission quantification estimates and vent estimates
to make dispatch decisions. Coupling FEAST with a process-
based model similar to that described by Cardoso-Saldon et
al.50 will provide the vent resolution required for that type of
analysis.
We draw the following conclusions from the results of this

work that can aid operators and regulatory agencies in
developing LDAR programs using new methane detection
technologies:

(1) Equivalent emission mitigation can be achieved by
LDAR programs with different detection thresholds by
varying the survey frequency.

(2) Median detection threshold of new technologies, to first
order, presents effective lower and upper bounds for
emission mitigation. At the lower end, decreasing the
detection threshold below 10 kg/day does not increase
mitigation outcomes proportionally because of skewed
leak-size distributions. At the upper end, emission
mitigation with high median detection threshold
technologies does not increase in proportion to survey
frequency as emissions smaller than the detection
threshold remain unaffected even at high survey
frequencies.

(3) Vented emissions play a critical role in the cost
effectiveness of tiered detection programs that direct
ground crews based on site-level emission detection.
Without a reliable way to differentiate sites with high
vented emissions from those with high fugitive
emissions, tiered programs risk directing ground crews
to many sites with little mitigation benefit, thereby
increasing costs.

(4) The survey frequency and detection threshold required
for equivalent emission mitigation will depend on the
emission-size distribution in the basin where the LDAR
program is applied. Evaluation of the efficacy of LDAR
programs and technology equivalence periodically to
account for (a) changes to emission-size distribution,
and (b) reduction in emissions over time will be critical
to ensure mitigation targets are achieved throughout the
duration of the program.

New methane detection technologies and platforms
represent an opportunity to cost effectively address methane
emissions from the oil and gas industry. While this work
focused on survey-based methods, the equivalency framework
can be applied to continuous monitors equally well once they
are supported in future releases of FEAST. The degrees of
freedom in LDAR program parameters such as technology
choice, hybrid detection, survey frequency, and detection
threshold provide a method to design methane mitigation
policies that best tackle issues specific to the gas field or
operator. As states and countries around the world converge
on methane emissions as a cost-effective, near-term approach
to address climate change, FEAST is a quantitative tool for
assessing new technologies, evaluating the outcomes of
mitigation programs, and achieving methane mitigation targets.
Future work on this model will enable evaluation of satellite
technologies and continuous monitoring systems to provide a
near real-time monitoring of methane emissions across the
world.

The framework can be applied to transmission and
distribution sectors of the natural gas industry in addition to
the production sector if emission rate distributions, leak
production rates, and repair costs are adjusted accordingly. In
addition, the transmission and distribution sectors may require
modeling support for leaks that grow or change over time.
Repair costs are small in the simulations because in most cases,
LDAR programs simply cause repairs to occur more quickly
than they otherwise would. If UDIM repair rates are lower or
nonexistent in other sectors, then repair costs may be more
significant.
In light of the potential use of this model in regulatory rule

making, all model code and documentation are made publicly
available as part of this publication, including any future
updates.
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